Pre-Calculus Summer Assignment 70 points (based on completion)

Name \qquad

1. $\angle X$ is an obtuse angle for which measure(s)?
A. $0^{\circ}<m \angle X<90^{\circ}$
B. $0^{\circ}<m \angle X<180^{\circ}$
C. $90^{\circ}<m \angle X<180^{\circ}$
D. $m \angle X=180^{\circ}$
2. In Figure 1, name the intersection of planes $D C G H, A E H D$.
A. $A D$
B. point D
C. HD
D. plane ABCD

Figure 1
3. In Figure 2, which of the following are not coplanar points?
A. S, O, T, and V
B. T, R, X, and Y
C. V, Y, S, and O
D. V, R, Y, and X

4. In Figure 3, if $\overrightarrow{Q S}$ bisects $\angle M Q R$ and $\mathrm{m} \angle \mathrm{SQR}=63^{\circ}$, what is the value of $\mathrm{m} \angle \mathrm{MQR}$?
A. 63°
B. 125°
C. 126°
D. 180°

Figure 3
5. In Figure 4, if all the lines are coplanar, which pair of angles are a linear pair?
A. $\angle 3$ and $\angle 4$

B $\angle 4$ and $\angle 5$
C. $\angle 1$ and $\angle 4$
D. $\angle 2$ and $\angle 3$

Figure 4

Pre-Calculus Summer Assignment
 70 points (based on completion)

6. Find the length of $\overline{A C}$. B is between A and C;
$A B=5$, and $B C=12$.
A. 14
B. 11
C. 16
D. 17
7. In Figure $5, P Q=3 x-8, X Q=x-6$, and $P X=12$. Find $P Q$.
A. $P Q=16$
B. $P Q=13$
C. $P Q=15$
D. $P Q=6$

8. If the measures of two supplementary angles are $2 x-3$ and $3 x-2$, then the measure of the smaller angle is:
A. 71
B. 67
C. 82
D. 76
9. In Figure 6, which pair of angles can be classified as vertical angles?
A. $\angle 3$ and $\angle 6$
B. $\angle 2$ and $\angle 1$
C. $\angle 5$ and $\angle 3$
D. $\angle 3$ and $\angle 1$

Figure 6
10. In a right triangle $A B C$, if the length of $A B=5 \mathrm{~cm}$., length of $B C=12 \mathrm{~cm}$., and $\angle A B C=90^{\circ}$, what is the length of $A C$?
A. 16 cm .
B. 13 cm .
C. 17 cm .
D. 14 cm .

Pre-Calculus Summer Assignment
 70 points (based on completion)

11. In Figure 7, two lines intersect. Solve for y.
A. 40
B. 38
C. 43
D. 35

Figure 7
12. Which step of the following proof is justified by using the Subtraction Property of Equality?
(1) $4(x-2)=x+1$
(2) $4 x-8=x+1$
(3) $\quad 4 x=x+9$
(4) $\quad 3 x=9$
(5) $\quad x=3$
A. Step 2
B. Step 3
C. Step 4
D. Step 5
13. Complete the following to make a true statement: "In a plane, if two lines are \qquad to a third line, then the two lines are
\qquad to each other.
A. parallel, parallel
B. perpendicular, perpendicular
C. parallel, perpendicular
D. None of the above
14. In Figure $8, \angle 1$ and $\angle 2$ are called:
A. Vertical angles
B. Corresponding angles
C. Supplementary angles
D. Complementary angles

Figure 8

Pre-Calculus Summer Assignment
 70 points (based on completion)

15. Which one of the following is false?
A. Complementary angles add up to 90°.
B. A rectangle is always a parallelogram.
C. Supplementary angles add up to 360°.
D. All angles in a square are 90°
16. In Figure 9, what value of x makes $a \| b$?
A. $x=30$
B. $x=20$
C. $x=10$
D. $x=50$

Figure 9
17. In Figure 10 , classify $\triangle A B C$ by its angles.
A. an obtuse triangle.
B. an acute triangle.
C. a right triangle.
D. a scalene triangle.

Figure 10
18. In a triangle, which type of triangle has no sides equal?
A. Scalene
B. Obtuse
C. Equilateral
D. Isosceles
19. In Figure 11, $A B=A C=C D$, and $\angle \mathrm{ADE}=150^{\circ}$. Find $m \angle B A C$.
A. 40°
B. 50°
C. 60°
D. 70°

Pre-Calculus Summer Assignment
 70 points (based on completion)

20. Of the 3 sides in a triangle, which option does NOT form a triangle?
A. $2,6,7$
B. $3,4,6$
C. $3,9,12$
D. $6,12,15$
21. In Figure 12, $L M N O$ is a parallelogram with $\mathrm{m} \angle 1=45$, $\mathrm{m} \angle 2=60$, and $\mathrm{m} \angle 3=80^{\circ}$. Find $m \angle M N P$.
A. 65
B. 40
C. 35
D. 100

22. In isosceles $\triangle B A G, B A=2 x+1, G A=3 x-5$, and $\mathrm{BG}=\mathrm{x}+5$. If $\angle G \cong \angle B$, what is the perimeter of $\triangle B A G$?
A. 36
B. 42
C. 32
D. 37
23. In Figure 13, find the values of a and b.
A. $a=5, b=5 \sqrt{ } 2$.
B. $a=5 \sqrt{ } 3, b=10$
C. $a=10, b=10 \sqrt{ } 3$
D. $a=5 \sqrt{ } 3, b=6 \sqrt{ } 3$

Figure 13
24. In a rectangle, what is NOT true?
A. Opposite sides are equal.
B. The diagonals intersect at 90°.
C. The diagonals are equal.
D. All angles are 90°.

Pre-Calculus Summer Assignment

70 points (based on completion)

25. In Figure 14, $W X Y Z$ is a rectangle. If $\angle 1=50^{\circ}$, what is the value of $\angle X O Y$?
A. 50°
B. 100°
C. 80°
D. 60°

Figure 14
26. In Figure 15, QRST is a rhombus. Which of the following is not always true?
A. $S T \cong Q T$
B. $\angle T O S$ is a right angle
C. $Q S \cong T R$
D. $\angle R S Q \cong \angle Q S T$
Figure 15

27. Which of the following statements cannot be written as a true biconditional statement?
A. If the sum of two angels is 90°, then the angles are complementary.
B. If M is the midpoint of segment $P Q$, then $P M+M Q=P Q$.
C. If $4 x+5=29$, then $x=6$.
D. If the sum of two angels is 180°, then the angles are supplementary.
28. In triangle $A B C$, if $A B=3, B C=8$, and $A C=7$, then the smallest angle of the triangle is:
A. $\angle \mathrm{C}$
B. $\angle A$
C. $\angle \mathrm{B}$
D. cannot be determined
29. If $h=4, j=6$, and $k=2$, which one of the following ratios is equal to $1 / 2$?
A. $\frac{h}{h+k}$
B. $\frac{h+j}{k}$
C. $\frac{h}{j+k}$
D. $\frac{j}{h+k}$

Pre-Calculus Summer Assignment
 70 points (based on completion)

30. If the lengths of two sides of a triangle are 4 and 7 , then the length of the third side must be between \qquad and \qquad _.
A. 3, 8
B. 4,10
C. 3,11
D. 4,11
31. In Figure 16, if $R T$ is parallel to $Q U, S R=8, R Q=12$, and $R T=10$, find $Q U$.
A. 15
B. 26
C. 20

D. 25
32. Which of the following pairs of objects are always similar?
A. Two circles
B. A rhombus and a rectangle
C. Two regular polygons
D. Two right triangles
33. For $\triangle A B C$ which is a right-angle triangle, $\angle \mathrm{ABC}=90^{\circ}, \angle \mathrm{BAC}=$ 45°, and $\angle A C B=45^{\circ}$. What is the value of $A C$ if $A B=5$.

A. 5
B. $10 \sqrt{ } 2$
C. $5 \sqrt{ } 2$
D. 10
34. In a right-angle triangle $A B C$, if $\angle A B C=90^{\circ}, B C=6$, and
$A C=8$, then $A B=$ \qquad ?
A. 14
B. $\sqrt{ } 28$
C. 10
D. 2

Pre-Calculus Summer Assignment
 70 points (based on completion)

35. A triangle with sides of lengths 5,12 , and 13 is a(n) ? triangle.
A. acute
B. right
C. obtuse
D. Answer cannot be determined.
36. In Figure 18, find length x to the nearest integer.
A. 9
B. 10
C. 8
D. 11

37. In an equilateral triangle with sides of length 10, the length of the altitude is:
A. 10
B. 5
C. $\sqrt{ } 75$
D. 7
38. In the circle below, points B and D are the points of tangency. If $A B=5 x-7$ and $A D=2 x+8$, find the value of x.

A. 4
B. 6
C. 5
D. 7

Pre-Calculus Summer Assignment
 70 points (based on completion)

39. If the diameter of a circle with center C is 16 cm and $C A=9$ cm , where is point A located relative to the circle?
A. point A is on the circle
B. point A is outside the circle
C. point A is inside the circle
D. cannot be determined
40. In Figure 20, O is the center of the circle and $\mathrm{m} \angle \mathrm{ROS}=80^{\circ}$. Find the value of arc TS.
A. 160°

B. 200°
C. 180°
D. 100°
41. A chord of a circle has length 8 cm and is located 3 cm from the center of the circle. What is the radius of the circle?
A. 5 cm
B. 8 cm
C. 6 cm
D. $5 \sqrt{ } 2$
42. In Figure 21, $\operatorname{arc} \mathrm{MN}=60^{\circ}$, arc $\mathrm{MQ}=100^{\circ}$ and $\operatorname{arc} \mathrm{PQ}=120^{\circ}$. Find $m \angle N Q P$? .
A. 40°
B. 35°
C. 90°
D. 80°

Figure 21
43. In Figure 22, O is the center of the circle, $\overleftrightarrow{P R}$ is a secant and $\overleftrightarrow{R S}$ is a tangent. If arc $\mathrm{SQ}=120^{\circ}$, what is $m \angle S R Q$?
A. 50
B. 40
C. 60
D. 30

Pre-Calculus Summer Assignment

70 points (based on completion)
44. Find the area of a circle with diameter 18 cm .
A. 81π units 2
B. $18 \pi u^{u} \mathrm{uts}^{2}$
C. 326π units 2
D. 163π units 2
45. In a circle with center C and radius 12 cm ., if $\angle A C B=90^{\circ}$, what is the length of arc $A B$?
A. 9π
B. 6π
C. 10π
D. 5π
46. The area of a regular polygon with perimeter 12 cm . and apothem 8 cm . is:
A. $96 \mathrm{~cm} .^{2}$
B. $32 \mathrm{~cm} .^{2}$
C. $64 \mathrm{~cm} .^{2}$
D. $48 \mathrm{~cm} .^{2}$
47. The length of a rectangle is 14 units and the rectangle has area 70 square units. What is the perimeter of the rectangle?
A. $p=17$ units
B. $p=38$ units
C. $p=32$ units
D. $p=44$ units
48. In Figure 24, a square is inscribed in a circle with radius 8 units. What is the area of the square?
A. $A=100$ units 2
B. $A=128 \sqrt{ } 2$ units 2
C. $A=128$ units 2
D. $A=120 \sqrt{ } 2$ units 2

Figure 24

Pre-Calculus Summer Assignment
 70 points (based on completion)

49. Find the slant height of the regular square pyramid in Figure 25.
A. $4 \sqrt{ } 29$
B. $6 \sqrt{ } 2$
C. $3 \sqrt{ } 29$
D. 18
50. Find the volume of a regular square pyramid with base edge 12
 and slant height 10.
A. $V=1152$ cubic units
B. $V=384$ cubic units
C. $V=576$ cubic units
D. $V=232$ cubic units
51. 30 is 40% of what number?
52. Solve for $x: \quad|4 x-1|=11$
53. Sketch the graph of a function $f(x)=2 x^{2}-5 x+3$ with domain $\{x: 1 \leq x \leq 4\}$, and range: $\{y:-3 \leq y \leq 5\}$

Graphing Data

					5					
					4					
					3					
					2					
					1					
-5	-4	-3	-2	-1	0	1	2	3	4	5
					-1					
					-2					
					-3					
					-4					
					-5					

Pre-Calculus Summer Assignment
 70 points (based on completion)

54. Write an equation in slope-intercept form that contains the point $(-2,5)$ and has a slope of -3 .
55. Write an equation of the line that contains the point $(-4,6)$ and is perpendicular to the line $5 x-6 y=15$.
56. Solve:

$$
\begin{aligned}
& 5 x-4 y+3 z=15 \\
& 6 x+2 y+9 z=13 \\
& 7 x+6 y-6 z=6
\end{aligned}
$$

57. Plot the graph of the inequality: $5 x+3 y \geq-15$

$$
2 x+6 y<-9
$$

Graphing Data

					5					
					4					
					3					
					2					
					1					
-5	-4	-3	-2	-1	0	1	2	3	4	5
					-1					
					-2					
					-3					
					-4					
					-5					

Pre-Calculus Summer Assignment
 70 points (based on completion)

58. Find the vertex, x - and y-intercept, and symmetric point of $y=2 x^{2}+7 x+3$
59. Factor completely: $x^{3}-125$
60. Factor: $\quad 5 x^{3}+6 x^{2}-45 x-54$
61. Multiply: $\left(x^{2}+3 x-4\right)(x+2)$
62. Long division:

$$
\left(x^{3}-9 x^{2}+23 x-15\right) \div(x+5)
$$

63. Use the factor theorem to factorize: $x^{3}-x^{2}-5 x+2$

Pre-Calculus Summer Assignment
 70 points (based on completion)

64. Simplify: $\sqrt{12}+2 \sqrt{48}+5 \sqrt{147}-4 \sqrt{12}$
65. Solve: $\sqrt{x-1}+3=x$, showing the Domain and extraneous solutions, if any.
66. Find the $45^{\text {th }}$ term of the Arithmetic series $2,5,8 \ldots \ldots$.
67. Find the two geometric means between 5 and 135 .
68. Expand the binomial series: $(x+y)^{5}$
69. Find the $8^{\text {th }}$ term of $(a-b)^{17}$
