Name

- 1. $\angle X$ is an obtuse angle for which measure(s)?
 - A. $0^\circ < m \angle X < 90^\circ$
 - **B.** $0^{\circ} < m \angle X < 180^{\circ}$
 - **C.** $90^{\circ} < m \angle X < 180^{\circ}$
 - D. $m \angle X = 180^{\circ}$
- 2. In Figure 1, name the intersection of planes DCGH, AEHD.
 - A. AD
 - B. point D
 - C. HD
 - D. plane ABCD

S

Ŕ

V

Figure 2

 $\bullet Y$

- 3. In Figure 2, which of the following are not coplanar points?
 - A. S, O, T, and V
 - B. T, R, X, and Y
 - C. V, Y, S, and O
 - D. *V*, *R*, *Y*, and *X*

- A. 63°
- B. 125°
- C. 126°
- D. 180°

2

5

- 5. In Figure 4, if all the lines are *coplanar*, which pair of angles are a linear pair?
 - A. $\angle 3$ and $\angle 4$
 - $\mathsf{B} \quad \angle 4 \text{ and } \angle 5$
 - **C.** $\angle 1$ and $\angle 4$
 - D. $\angle 2$ and $\angle 3$

Figure 4

4

1

- 6. Find the length of \overline{AC} . *B* is between *A* and *C*; AB = 5, and BC = 12.
 - A. 14
 - B. 11
 - C. 16
 - D. 17
- 7. In Figure 5, PQ = 3x 8, XQ = x 6, and PX = 12. Find PQ.
 - A. PQ = 16
 - B. PQ = 13
 - C. PQ = 15
 - D. PQ = 6

- 8. If the measures of two supplementary angles are 2x 3 and 3x 2, then the measure of the *smaller* angle is:
 - A. 71
 - B. 67
 - C. 82
 - D. 76
- 9. In Figure 6, which pair of angles can be classified as vertical angles?
 - A. $\angle 3$ and $\angle 6$
 - B. $\angle 2$ and $\angle 1$
 - C. $\angle 5$ and $\angle 3$
 - D. $\angle 3$ and $\angle 1$

- 10. In a right triangle ABC, if the length of AB = 5 cm., length of BC = 12 cm., and $\angle ABC = 90^{\circ}$, what is the length of AC?
 - A. 16 cm.
 - B. 13 cm.
 - C. 17 cm.
 - D. 14 cm.

Pre-Calculus Summer Assignment

70 points (based on completion)

- 11. In Figure 7, two lines intersect. Solve for y.
 - A. 40
 - B. 38
 - C. 43
 - D. 35

- 12. Which step of the following proof is justified by using the Subtraction Property of Equality?
 - (1) 4(x-2) = x+1
 - (2) 4x 8 = x + 1
 - $(3) \qquad 4x = x + 9$
 - $(4) \qquad \qquad 3x = 9$
 - (5) x = 3
 - A. Step 2
 - B. Step 3
 - C. Step 4
 - D. Step 5
- Complete the following to make a true statement: "In a plane, if two lines are _____ to a third line, then the two lines are _____ to each other.
 - A. parallel, parallel
 - B. perpendicular, perpendicular
 - C. parallel, perpendicular
 - D. None of the above
- 14. In Figure 8, $\angle 1$ and $\angle 2$ are *called*:
 - A. Vertical angles
 - B. Corresponding angles
 - C. Supplementary angles
 - D. Complementary angles

- 15. Which one of the following is false?
 - A. Complementary angles add up to 90°.
 - B. A rectangle is always a parallelogram.
 - C. Supplementary angles add up to 360°.
 - D. All angles in a square are 90°
- 16. In Figure 9, what value of x makes a || b?
 - A. x = 30
 - B. x = 20
 - C. x = 10
 - D. *x* = 50

- 17. In Figure 10, classify $\triangle ABC$ by its angles.
 - A. an obtuse triangle.
 - B. an acute triangle.
 - C. a right triangle.
 - D. a scalene triangle.

- 18. In a triangle, which type of triangle has no sides equal?
 - A. Scalene
 - B. Obtuse
 - C. Equilateral
 - D. Isosceles

- 20. Of the 3 sides in a triangle, which option does **NOT** form a triangle?A. 2, 6, 7
 - B. 3, 4, 6
 - C. 3, 9, 12
 - D. 6, 12, 15
 - D. 6, 12, 15
- 21. In Figure 12, *LMNO* is a parallelogram with $m \angle 1 = 45$, $m \angle 2 = 60$, and $m \angle 3 = 80^{\circ}$. Find $m \angle MNP$.
 - A. 65
 - B. 40
 - C. 35
 - D. 100

- 22. In isosceles $\triangle BAG$, BA = 2x + 1, GA = 3x 5, and BG = x + 5. If $\angle G \cong \angle B$, what is the perimeter of $\triangle BAG$?
 - A. 36
 - B. 42
 - C. 32
 - D. 37
- 23. In Figure 13, find the values of *a* and *b*. A. a = 5, $b = 5\sqrt{2}$.
 - B. $a = 5\sqrt{3}, b = 10$
 - C. a = 10, b = $10\sqrt{3}$
 - D. a = $5\sqrt{3}$, b = $6\sqrt{3}$

Figure 13

- 24. In a rectangle, what is **NOT** true?
 - A. Opposite sides are equal.
 - B. The diagonals intersect at 90°.
 - C. The diagonals are equal.
 - D. All angles are 90°.

- 25. In Figure 14, *WXYZ* is a rectangle. If $\angle 1 = 50^{\circ}$, what is the value of $\angle XOY$?
 - A. 50°
 - B. 100°
 - C. 80°
 - D. 60°

26. In Figure 15, *QRST* is a rhombus. Which of the following is *not* always true?

A. $ST \cong QT$

- B. $\angle TOS$ is a right angle
- $C. \ QS \cong TR$
- D. $\angle RSQ \cong \angle QST$
- 27. Which of the following statements *cannot* be written as a true biconditional statement?
 - A. If the sum of two angels is 90°, then the angles are complementary.
 - B. If *M* is the midpoint of segment PQ, then PM + MQ = PQ.
 - C. If 4x + 5 = 29, then x = 6.
 - D. If the sum of two angels is 180°, then the angles are supplementary.
- 28. In triangle ABC, if AB = 3, BC = 8, and AC = 7, then the smallest angle of the triangle is:
 - A. ∠C
 - B. ∠A
 - C. ∠B
 - D. cannot be determined
- 29. If h = 4, j = 6, and k = 2, which one of the following ratios is equal to 1/2?
 - A. $\frac{h}{h+k}$
 - B. $\frac{h+j}{j}$
 - b. -k
 - C. $\frac{h}{j+k}$
 - D. $\frac{j}{h+k}$

30. If the lengths of two sides of a triangle are 4 and 7, then the length of the third side *must* be between _?__ and _?__.

- A. 3, 8
- B. 4, 10
- C. 3, 11
- D. 4, 11
- 31. In Figure 16, if RT is parallel to QU, SR = 8, RQ = 12, and RT = 10, find QU.
 - A. 15
 - B. 26
 - C. 20
 - D. 25

- 32. Which of the following pairs of objects are always similar?
 - A. Two circles
 - B. A rhombus and a rectangle
 - C. Two regular polygons
 - D. Two right triangles
- 33. For $\triangle ABC$ which is a right-angle triangle, $\angle ABC = 90^{\circ}$, $\angle BAC = 45^{\circ}$, and $\angle ACB = 45^{\circ}$. What is the value of AC if AB = 5.

- 34. In a right-angle triangle ABC, if $\angle ABC = 90^{\circ}$, BC = 6, and AC = 8, then $AB = \underline{?}$.
 - A. 14 B. √28
 - Б. vzo С. 10
 - U. 10

- 35. A triangle with sides of lengths 5, 12, and 13 is a(n) _? triangle.
 - A. acute
 - B. right
 - C. obtuse
 - D. Answer cannot be determined.
- 36. In Figure 18, find length x to the nearest integer.
 - A. 9
 - B. 10
 - C. 8
 - D. 11

- 37. In an equilateral triangle with sides of length 10, the length of the altitude is:
 - A. 10
 - B. 5
 - C. √75
 - D. 7
- 38. In the circle below, points B and D are the points of tangency. If AB = 5x - 7 and AD = 2x + 8, find the value of x.

Α. 4 Β. 6 5

C.

- 39. If the diameter of a circle with center C is 16 cm and CA = 9 cm, where is point A located relative to the circle?
 - A. point A is on the circle
 - B. point *A* is outside the circle
 - C. point *A* is inside the circle
 - D. cannot be determined
- 40. In Figure 20, *O* is the center of the circle and $m \angle ROS = 80^{\circ}$. Find the value of arc TS.
 - A. 160°
 - B. 200°
 - C. 180°
 - D. 100°

- A. 5 cm
- B. 8 cm
- C. 6 cm
- D. 5√2
- 42. In Figure 21, arc MN = 60°, arc MQ = 100° and arc PQ = 120°. Find $m \angle NQP$?
 - A. 40°
 - B. 35°
 - C. 90°
 - D. 80°

Ν

- A. 50
- B. 40
- C. 60
- D. 30

- 44. Find the area of a circle with diameter 18 cm.
 - A. 81π units²
 - B. $18\pi \text{ units}^2$
 - C. 326π units²
 - D. 163π units²
- 45. In a circle with center C and radius 12 cm., if $\angle ACB = 90^{\circ}$, what is the length of arc AB ?
 - Α. 9π
 - Β. 6π
 - C. 10π
 - D. 5π
- 46. The area of a regular polygon with perimeter 12 cm. and apothem 8 cm. is:
 - A. 96 cm.²
 - B. 32 cm.²
 - C. 64 cm.²
 - D. 48 cm.²
- 47. The length of a rectangle is 14 units and the rectangle has area 70 square units. What is the perimeter of the rectangle?
 - A. p = 17 units
 - B. p = 38 units
 - C. p = 32 units
 - D. p = 44 units
- 48. In Figure 24, a square is inscribed in a circle with radius 8 units. What is the area of the square?
 - A. $A = 100 \text{ units}^2$
 - B. $A = 128\sqrt{2}$ units²
 - C. $A = 128 \text{ units}^2$
 - D. $A = 120\sqrt{2}$ units²

Pre-Calculus Summer Assignment

70 points (based on completion)

- 49. Find the slant height of the regular square pyramid in Figure 25. A. 4√29

 - B. 6√2 C. 3√29
 - D. 18
- 50. Find the volume of a regular square pyramid with base edge 12 and slant height 10.
 - A. V = 1152 cubic units
 - B. V = 384 cubic units
 - C. V = 576 cubic units
 - D. V = 232 cubic units
- 51. 30 is 40% of what number?
- 52. Solve for x: |4x - 1| = 11

53. Sketch the graph of a function $f(x) = 2x^2 - 5x + 3$ with domain {x: $1 \le x \le 4$ }, and range: {y: $-3 \le y \le 5$ }

Graphing Data

					5					
					4					6
					3					6
					2					0
					1					
-5	-4	-3	-2	-1	0	1	2	3	4	5
					-1					8
					-2					
					-3					0
					-4					6
					-5					8

54. Write an equation in slope-intercept form that contains the point (-2, 5) and has a slope of -3.

55. Write an equation of the line that contains the point (-4, 6) and is perpendicular to the line 5x - 6y = 15.

56. Solve:
$$5x - 4y + 3z = 15$$

 $6x + 2y + 9z = 13$
 $7x + 6y - 6z = 6$

57. Plot the graph of the inequality: $5x + 3y \ge -15$ 2x + 6y < -9

Graphing Data

58. Find the vertex, x- and y- intercept, and symmetric point of $y = 2x^2 + 7x + 3$.

- 59. Factor completely:x³ 125
- 60. Factor: $5x^3 + 6x^2 45x 54$
- 61. Multiply: $(x^2 + 3x 4)(x + 2)$

62. Long division: $(x^3 - 9x^2 + 23x - 15) \div (x + 5)$

63. Use the factor theorem to factorize: $x^3 - x^2 - 5x + 2$

64. Simplify: $\sqrt{12} + 2\sqrt{48} + 5\sqrt{147} - 4\sqrt{12}$

65. Solve: $\sqrt{x-1} + 3 = x$, showing the Domain and extraneous solutions, if any.

67. Find the 45th term of the Arithmetic series 2, 5, 8.....

68. Find the two geometric means between 5 and 135.

69. Expand the binomial series: $(x + y)^5$

70. Find the 8^{th} term of $(a - b)^{17}$